Add like
Add dislike
Add to saved papers

Glycemic variability leads to higher levels of auto-oxidized oxysterol species in patients with type 1 diabetes mellitus.

PURPOSE: Hyperglycemia and glycemic variability (GV) are associated with oxidative stress in patients with diabetes mellitus (DM). Oxysterol species, produced by the non-enzymatic oxidation of cholesterol, are potential biomarkers of oxidative stress. This study examined the relationship between auto-oxidized oxysterols and GV in patients with type 1 DM.

METHODS: Thirty patients with type 1 DM using a continuous subcutaneous insulin infusion pump therapy and a healthy control group (n = 30) were included in this prospective study. A Continuous Glucose Monitoring System device was applied for 72 h. Blood samples were taken for oxysterols produced by non-enzymatic oxidation [7-ketocholesterol (7-KC) and cholestane-3β, 5α, 6β-triol (Chol-Triol)] levels at 72 h. Short-term glycemic variability parameters, mean amplitude of glycemic excursions (MAGE), the standard deviation of glucose measurements (Glucose-SD), and mean of daily differences (MODD) were calculated with continuous glucose monitoring data. HbA1c was used to evaluate glycemic control and HbA1c-SD (the SD of HbA1c over the past year) for long-term glycemic variability.

RESULTS: 7-KC and Chol-triol levels were significantly higher in the study group than in the control group. Strong positive correlations were found between 7-KC with MAGE(24-48 h) and Glucose-SD(24-48 h). 7-KC was positively correlated with MAGE(0-72 h) and Glucose-SD(0-72 h). No significant correlation was found between HbA1c and HbA1c -SD with oxysterol levels. The regression models showed that SD(24-48 h) and MAGE(24-48 h) predicted 7-KC levels while HbA1c did not.

CONCLUSIONS: Glycemic variability leads to higher levels of auto-oxidized oxysterol species in patients with type 1 DM independent of long-term glycemic control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app