Sacubitril/valsartan reduces susceptibility to atrial fibrillation by improving atrial remodeling in spontaneously hypertensive rats.
European Journal of Pharmacology 2023 May 13
AIM: Sacubitril/valsartan (Sac/Val, LCZ696), the world's first angiotensin receptor-neprilysin inhibitor (ARNi), has been widely used in the treatment of heart failure. However, the use of Sac/Val in the treatment of atrial fibrillation (AF), especially AF with hypertension, has been less reported. We investigated the effect of Sac/Val on atrial remodeling and hypertension-related AF.
METHODS: The AF induction rate and electrophysiological characteristics of spontaneously hypertensive rats (SHRs) treated with Sac/Val or Val were detected by rapid atrial pacing and electrical mapping/optical mapping. The whole-cell patch-clamp and western blot were used to observe electrical/structural remodeling of atrial myocytes/tissue of rats and atrium-derived HL-1 cells cultured under 40 mmHg in vitro.
RESULTS: Sac/Val was superior to Val in reducing blood pressure, myocardial hypertrophy and susceptibility of AF in SHRs. The shorten action potentials duration (APD), decreased L type calcium channel current (ICa,L ) and Cav1.2, increased ultrarapid delayed rectified potassium current (Ikur ) and Kv1.5 in atrial myocytes/tissue of SHRs could be better improved by Sac/Val, as well as the levels of atrial fibrosis. While the protein expression of angiotensin-converting enzyme-1 (ACE-1), angiotensin, angiotensin II type I AT1 receptor (AT1R) and neprilysin (NEP) were increased, which could be more effective ameliorated by Sac/Val than Val. Furthermore, Val + Sacubitrilat (LBQ657) (an active NEP inhibitor) was also superior to LBQ657 or Val in improving the electrical and structural remodeling of HL-1 cells through inhibiting NEP.
CONCLUSION: Sac/Val can improve atrial structural and electrical remodeling induced by hypertension and reduce the AF susceptibility by inhibiting RAS and NEP. The above effects of Sac/Val were superior to Val alone.
METHODS: The AF induction rate and electrophysiological characteristics of spontaneously hypertensive rats (SHRs) treated with Sac/Val or Val were detected by rapid atrial pacing and electrical mapping/optical mapping. The whole-cell patch-clamp and western blot were used to observe electrical/structural remodeling of atrial myocytes/tissue of rats and atrium-derived HL-1 cells cultured under 40 mmHg in vitro.
RESULTS: Sac/Val was superior to Val in reducing blood pressure, myocardial hypertrophy and susceptibility of AF in SHRs. The shorten action potentials duration (APD), decreased L type calcium channel current (ICa,L ) and Cav1.2, increased ultrarapid delayed rectified potassium current (Ikur ) and Kv1.5 in atrial myocytes/tissue of SHRs could be better improved by Sac/Val, as well as the levels of atrial fibrosis. While the protein expression of angiotensin-converting enzyme-1 (ACE-1), angiotensin, angiotensin II type I AT1 receptor (AT1R) and neprilysin (NEP) were increased, which could be more effective ameliorated by Sac/Val than Val. Furthermore, Val + Sacubitrilat (LBQ657) (an active NEP inhibitor) was also superior to LBQ657 or Val in improving the electrical and structural remodeling of HL-1 cells through inhibiting NEP.
CONCLUSION: Sac/Val can improve atrial structural and electrical remodeling induced by hypertension and reduce the AF susceptibility by inhibiting RAS and NEP. The above effects of Sac/Val were superior to Val alone.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app