Add like
Add dislike
Add to saved papers

Integrated Analysis of Blood and Urine Biomarkers to Identify Acute Kidney Injury Subphenotypes and Associations With Long-term Outcomes.

RATIONALE & OBJECTIVE: Acute kidney injury (AKI) is a heterogeneous clinical syndrome with varying causes, pathophysiology, and outcomes. We incorporated plasma and urine biomarker measurements to identify AKI subgroups (subphenotypes) more tightly linked to underlying pathophysiology and long-term clinical outcomes.

STUDY DESIGN: Multicenter cohort study.

SETTING & PARTICIPANTS: 769 hospitalized adults with AKI matched with 769 without AKI, enrolled from December 2009 to February 2015 in the ASSESS-AKI Study.

PREDICTORS: 29 clinical, plasma, and urinary biomarker parameters used to identify AKI subphenotypes.

OUTCOME: Composite of major adverse kidney events (MAKE) with a median follow-up period of 4.7 years.

ANALYTICAL APPROACH: Latent class analysis (LCA) and k-means clustering were applied to 29 clinical, plasma, and urinary biomarker parameters. Associations between AKI subphenotypes and MAKE were analyzed using Kaplan-Meier curves and Cox proportional hazard models.

RESULTS: Among 769 AKI patients both LCA and k-means identified 2 distinct AKI subphenotypes (classes 1 and 2). The long-term risk for MAKE was higher with class 2 (adjusted HR, 1.41 [95% CI, 1.08-1.84]; P=0.01) compared with class 1, adjusting for demographics, hospital level factors, and KDIGO stage of AKI. The higher risk of MAKE among class 2 was explained by a higher risk of long-term chronic kidney disease progression and dialysis. The top variables that were different between classes 1 and 2 included plasma and urinary biomarkers of inflammation and epithelial cell injury; serum creatinine ranked 20th out of the 29 variables for differentiating classes.

LIMITATIONS: A replication cohort with simultaneously collected blood and urine sampling in hospitalized adults with AKI and long-term outcomes was unavailable.

CONCLUSIONS: We identify 2 molecularly distinct AKI subphenotypes with differing risk of long-term outcomes, independent of the current criteria to risk stratify AKI. Future identification of AKI subphenotypes may facilitate linking therapies to underlying pathophysiology to prevent long-term sequalae after AKI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app