Add like
Add dislike
Add to saved papers

Efficacy of different strategies of responsive neurostimulation on seizure control and their association with acute neurophysiological effects in rats.

Responsive neurostimulation (RNS) has shown promising but limited efficacy in the treatment of drug-resistant epilepsy. The clinical utility of RNS is hindered by the incomplete understanding of the mechanism behind its therapeutic effects. Thus, assessing the acute effects of responsive stimulation (AERS) based on intracranial EEG recordings in the temporal lobe epilepsy rat model may provide a better understanding of the potential therapeutic mechanisms underlying the antiepileptic effect of RNS. Furthermore, clarifying the correlation between AERS and seizure severity may help guide the optimization of RNS parameter settings. In this study, RNS with high (130 Hz) and low frequencies (5 Hz) was applied to the subiculum (SUB) and CA1. To quantify the changes induced by RNS, we calculated the AERS during synchronization by Granger causality and analyzed the band power ratio in the classic power band after different stimulations were delivered in the interictal and seizure onset periods, respectively. This demonstrates that only targets combined with an appropriate stimulation frequency could be efficient for seizure control. High-frequency stimulation of CA1 significantly shortened the ongoing seizure duration, which may be causally related to increased synchronization after stimulation. Both high-frequency stimulation of the CA1 and low-frequency stimulation delivered to the SUB reduced seizure frequency, and the reduced seizure risk may correlate with the change in power ratio near the theta band. It indicated that different stimulations may control seizures in diverse manners, perhaps with disparate mechanisms. More focus should be placed on understanding the correlation between seizure severity and synchronization and rhythm around theta bands to simplify the process of parameter optimization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app