Radiomics Based on DCE-MRI for Predicting Response to Neoadjuvant Therapy in Breast Cancer.
Academic Radiology 2023 May 10
RATIONALE AND OBJECTIVES: To compare the value of radiomics and diameter% based on pre- and early-treatment dynamic enhanced MR (DCE-MRI) of the breast in predicting response to neoadjuvant therapy (NAT) in breast cancer and to construct a tool for early noninvasive prediction of NAT outcomes.
MATERIALS AND METHODS: Retrospective analysis of clinical and imaging data of 142 patients with primary invasive breast cancer who underwent DCE-MRI before and after two cycles of NAT at our institution. Enroled patients were randomly assigned in a 7:3 ratio to the training group and the test group. Patients were divided into pathological complete response (pCR) and non-pathological complete response groups based on surgical pathology findings after NAT. The maximum diameter relative regression values (Diameter%) before and after treatment were calculated and the conventional imaging Diameter% model was constructed. Based on pre- and early-NAT DCE-MRI, the optimal features of pre-NAT, early-NAT, and delta radiomics were screened using redundancy analysis, least absolute shrinkage, and selection operator methods to construct the corresponding radiomics model and calculate the Radscores. Indicators that were statistically significant in the univariate analysis of clinical data were further screened by stepwise regression and combined with Radscores to construct the fusion model. All models were evaluated and compared.
RESULTS: In the test set, the area under the curve (AUC) of the delta radiomics model (0.87) was higher than that of the pre-NAT, early-NAT radiomics models (0.57, 0.78) and the Diameter% model (0.83). The fusion model had the best efficacy in predicting pCR after NAT, with AUCs of 0.91 in the training and test sets. And its nomogram plot showed that Radscore of early-NAT radiomics had the greatest weight. In the test set, the fusion model and Delta radiomics model improved the efficacy of predicting pCR by 35.56% and 14.19%, respectively, compared to the Diameter% model (P = 0 and .039). Clinical decision curves showed the highest overall clinical benefit for the fusion model.
CONCLUSION: Radiomics, especially delta and early-NAT radiomics, may be potential biomarkers for early noninvasive prediction of NAT outcomes. And a fusion model constructed from meaningful clinicopathological indicators combined with radiomics can effectively predict NAT response.
MATERIALS AND METHODS: Retrospective analysis of clinical and imaging data of 142 patients with primary invasive breast cancer who underwent DCE-MRI before and after two cycles of NAT at our institution. Enroled patients were randomly assigned in a 7:3 ratio to the training group and the test group. Patients were divided into pathological complete response (pCR) and non-pathological complete response groups based on surgical pathology findings after NAT. The maximum diameter relative regression values (Diameter%) before and after treatment were calculated and the conventional imaging Diameter% model was constructed. Based on pre- and early-NAT DCE-MRI, the optimal features of pre-NAT, early-NAT, and delta radiomics were screened using redundancy analysis, least absolute shrinkage, and selection operator methods to construct the corresponding radiomics model and calculate the Radscores. Indicators that were statistically significant in the univariate analysis of clinical data were further screened by stepwise regression and combined with Radscores to construct the fusion model. All models were evaluated and compared.
RESULTS: In the test set, the area under the curve (AUC) of the delta radiomics model (0.87) was higher than that of the pre-NAT, early-NAT radiomics models (0.57, 0.78) and the Diameter% model (0.83). The fusion model had the best efficacy in predicting pCR after NAT, with AUCs of 0.91 in the training and test sets. And its nomogram plot showed that Radscore of early-NAT radiomics had the greatest weight. In the test set, the fusion model and Delta radiomics model improved the efficacy of predicting pCR by 35.56% and 14.19%, respectively, compared to the Diameter% model (P = 0 and .039). Clinical decision curves showed the highest overall clinical benefit for the fusion model.
CONCLUSION: Radiomics, especially delta and early-NAT radiomics, may be potential biomarkers for early noninvasive prediction of NAT outcomes. And a fusion model constructed from meaningful clinicopathological indicators combined with radiomics can effectively predict NAT response.
Full text links
Trending Papers
Abdominal wall closure.British Journal of Surgery 2023 September 16
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app