Add like
Add dislike
Add to saved papers

The 15-hydroxyprostaglandin dehydrogenase inhibitor SW033291 ameliorates abnormal hepatic glucose metabolism through PGE 2 -EP4 receptor-AKT signaling in a type 2 diabetes mellitus mouse model.

Type 2 diabetes mellitus (T2DM) is associated with high rates of morbidity and mortality worldwide. Prostaglandin E2 (PGE2 ) is a lipid signaling molecule that can ameliorate the symptoms of some metabolic diseases, including T2DM, and improve tissue repair and regeneration. Although SW033291 can increase PGE2 levels through its action as a small molecule inhibitor of the PGE2 -degrading enzyme 15-hydroxyprostaglandin dehydrogenase, its effects on T2DM remain unclear. In the present study, we evaluated whether SW033291 treatment exerts a protective effect against T2DM and explored the underlying mechanisms. A T2DM mouse model was established using a high-fat diet combined with streptozotocin treatment. Palmitic acid-treated LO2 cells were used as an insulin-resistant cell model. SW033291 treatment reduced body weight and fasting blood glucose levels as well as serum triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels in vivo. In addition to ameliorating glucose and insulin tolerance, SW033291 treatment reversed the T2DM-induced decrease in glycogen synthesis and increase in gluconeogenesis in the liver. Furthermore, SW033291 administration increased hepatic glycogen synthase kinase 3 beta (GSK3β) phosphorylation levels to promote glycogen synthesis. SW033291 treatment also inhibited gluconeogenesis by upregulating AKT serine/threonine kinase (AKT) and forkhead box O1 (FOXO1) phosphorylation and reducing glucose-6-phosphatase and phosphoenolpyruvate carboxykinase 1 expression in the livers of T2DM model mice. Additionally, SW033291 treatment improved abnormal hepatic glucose metabolism through the PGE2 -EP4 receptor-AKT-GSK3β/FOXO1 signaling pathway in vitro. These results suggest a novel role of SW033291 in improving T2DM and support its potential as a novel therapeutic agent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app