Add like
Add dislike
Add to saved papers

Consensus insertion/deletions and amino acid variations of all coding and noncoding regions of the SARS-CoV-2 Omicron clades, including the XBB and BQ.1 lineages.

The currently dominant Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has swiftly diverged into clades. To predict the probable impact of these clades, the consensus insertions/deletions (indels) and amino acid substitutions of the whole genome of clades were compared with the original SARS-CoV-2 strain. The evolutionary history of representatives of clades and lineages was inferred using the maximum-likelihood method and tested using the bootstrap method. The indels and polymorphic amino acids were found to be either clade-specific or shared among clades. The 21K clade has unique indels and substitutions, which probably represent reverted indels/substitutions. Three variations that appear to be associated with SARS-CoV-2 attenuation in the Omicron clades included a deletion in the nucleocapsid gene, a deletion in the 3'untranslated region, and a truncation in open reading frame 8. Phylogenetic analysis showed that the Omicron clades and lineages form three separate clusters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app