Add like
Add dislike
Add to saved papers

Effects of Curcumin on Axon Growth and Myelin Sheath Formation in an In Vitro Model.

Although the beneficial effects of curcumin, extracted from rhizomes of the ginger family genus Curcuma, on the repair and regeneration of nerves have been evaluated in vitro, there are few studies concerning its effects on axon myelination. Here, we used pheochromocytoma cells as an in vitro model of peripheral nerves. Pheochromocytoma cells were cultured alone or cocultured with Schwann cells and treated with increasing concentrations of curcumin. Cell growth was observed, and the expression levels of growth-associated protein 43 (GAP-43), microtubule-associated protein 2 (MAP-2), myelin basic protein (MBP), myelin protein zero (MPZ), Krox-20, and octamer binding factor 6 (Oct-6) were quantified. We found a significant increase in expression of all six proteins following curcumin treatment, with a corresponding increase in the levels of MBP, MPZ, Krox-20, and Oct-6 mRNA. Upregulation was greater with increasing curcumin concentration, showing a concentration-dependent effect. The results suggested that curcumin can promote the growth of axons by upregulating the expression of GAP-43 and MAP-2, stimulate synthesis and secretion of myelin-related proteins, and facilitate formation of the myelin sheath in axons by upregulating the expression of Krox-20 and Oct-6. Therefore, curcumin could be widely applied in future strategies for the treatment of nerve injuries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app