Add like
Add dislike
Add to saved papers

The differential vulnerabilities of Per2 knockout mice to the addictive properties of methamphetamine and cocaine.

With the pervasive occurrence of substance abuse worldwide, unraveling the neuropharmacology of drugs of abuse, such as psychostimulants, is undeniably essential. Mice lacking Period 2 (Per2), a gene associated with the biological time-regulating system or circadian rhythm, have been proposed as a potential animal model for drug abuse vulnerability, demonstrating a greater preference for methamphetamine (METH) reward than wild-type (WT) mice. However, the responses of Per2 knockout (KO) mice to the reinforcing effects of METH or other psychostimulants are yet to be established. In this study, the responses of WT and Per2 KO mice to various psychostimulants via intravenous self-administration were determined, along with their behaviors in METH- or cocaine (COC)-induced conditioned place preference and spontaneous locomotion in the open-field test. Per2 KO mice exhibited greater addiction-like responses to METH and 5-EAPB (1-(1-benzofuran-5-yl)-N-ethylpropan-2-amine), but their responses to COC and dimethocaine were comparable to WT mice, indicating a divergent influence of Per2 deficiency on abuse susceptibility to specific psychostimulants. To potentially define the underlying mechanism for this phenotype, 19 differentially expressed genes were identified, through RNA sequencing, which might respond specifically to repeated METH, but not COC, administration in the mouse striatum and were narrowed down to those previously associated with immediate early genes or synaptic plasticity. The correlation between locomotor activity and mRNA expression levels revealed a moderate correlation between METH-induced behavior and Arc or Junb expression in Per2 KO mice only, suggesting their essential role that may lead to the higher vulnerability of Per2 KO mice to METH, but not COC. These findings indicate a potentially unique effect of Per2 expression level on the involvement of Arc and Junb in determining specific vulnerabilities to drugs, and possibly including abuse potential.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app