Add like
Add dislike
Add to saved papers

Association of Biomarker-Based Artificial Intelligence With Risk of Racial Bias in Retinal Images.

JAMA Ophthalmology 2023 June 2
IMPORTANCE: Although race is a social construct, it is associated with variations in skin and retinal pigmentation. Image-based medical artificial intelligence (AI) algorithms that use images of these organs have the potential to learn features associated with self-reported race (SRR), which increases the risk of racially biased performance in diagnostic tasks; understanding whether this information can be removed, without affecting the performance of AI algorithms, is critical in reducing the risk of racial bias in medical AI.

OBJECTIVE: To evaluate whether converting color fundus photographs to retinal vessel maps (RVMs) of infants screened for retinopathy of prematurity (ROP) removes the risk for racial bias.

DESIGN, SETTING, AND PARTICIPANTS: The retinal fundus images (RFIs) of neonates with parent-reported Black or White race were collected for this study. A u-net, a convolutional neural network (CNN) that provides precise segmentation for biomedical images, was used to segment the major arteries and veins in RFIs into grayscale RVMs, which were subsequently thresholded, binarized, and/or skeletonized. CNNs were trained with patients' SRR labels on color RFIs, raw RVMs, and thresholded, binarized, or skeletonized RVMs. Study data were analyzed from July 1 to September 28, 2021.

MAIN OUTCOMES AND MEASURES: Area under the precision-recall curve (AUC-PR) and area under the receiver operating characteristic curve (AUROC) at both the image and eye level for classification of SRR.

RESULTS: A total of 4095 RFIs were collected from 245 neonates with parent-reported Black (94 [38.4%]; mean [SD] age, 27.2 [2.3] weeks; 55 majority sex [58.5%]) or White (151 [61.6%]; mean [SD] age, 27.6 [2.3] weeks, 80 majority sex [53.0%]) race. CNNs inferred SRR from RFIs nearly perfectly (image-level AUC-PR, 0.999; 95% CI, 0.999-1.000; infant-level AUC-PR, 1.000; 95% CI, 0.999-1.000). Raw RVMs were nearly as informative as color RFIs (image-level AUC-PR, 0.938; 95% CI, 0.926-0.950; infant-level AUC-PR, 0.995; 95% CI, 0.992-0.998). Ultimately, CNNs were able to learn whether RFIs or RVMs were from Black or White infants regardless of whether images contained color, vessel segmentation brightness differences were nullified, or vessel segmentation widths were uniform.

CONCLUSIONS AND RELEVANCE: Results of this diagnostic study suggest that it can be very challenging to remove information relevant to SRR from fundus photographs. As a result, AI algorithms trained on fundus photographs have the potential for biased performance in practice, even if based on biomarkers rather than raw images. Regardless of the methodology used for training AI, evaluating performance in relevant subpopulations is critical.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app