Add like
Add dislike
Add to saved papers

Changes in corneal biomechanical parameters in keratoconus eyes with various severities after corneal cross-linking (CXL): A comparative study.

OBJECTIVES: To compare changes in corneal biomechanical parameters one year after corneal cross-linking (CXL) in keratoconus (KCN) eyes of different severities.

METHODS: Seventy-five eyes with mild, moderate, and severe grades of KCN (n = 24, 31, and 20 eyes, respectively) that were treated with CXL, based upon the standard Dresden protocol, were included. The corneal biomechanical assessment was performed using Corvis ST and Ocular Response Analyzer (ORA). Changes in Corvis's dynamic corneal response (DCR) parameters and ORA's derived parameters (corneal hysteresis (CH), and corneal resistance factor (CRF)) were assessed whilst the corneal thickness and intraocular pressure were considered as covariates.

RESULTS: There was no statistically significant difference in the corneal biomechanical parameters obtained using both devices after surgery separately in different KCN grades, except for the deformation amplitude (DA) in the severe KCN group (P = 0.017). Changes in the classic parameters of the highest concavity phase of Corvis ST (peak distance, radius, and DA) were more positive and in the newer parameters (integrated inverse radius (IIR), deformation amplitude ratio (DAR)) more negative in the severe group compared to the other groups. Also, the mean change in CH (P = 0.710), and CRF (P = 0.565), showed a negative shift in higher grades of KCN; however, there was no significant difference in the mean changes of all parameters between different groups. (P > 0.05).

CONCLUSIONS: Similar changes in the Corvis ST and ORA parameters in mild, moderate, and severe KCN indicate biomechanical stability and the effective role of CXL in stopping the progressive nature of keratoconus in eyes of varying severities one year after CXL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app