Add like
Add dislike
Add to saved papers

Formation and Degradability of Per- and Polyfluoroalkyl Substances in River Soils around a Fluoropolymer-Manufacturing Plant in Osaka, Japan.

Our previous studies reported that perfluorooctanoic acid (PFOA) contamination decreased in well, tap, and surface water around a fluoropolymer plant in Osaka, Japan, between 2003 and 2016. In this study, we evaluated the degradability of PFOA and perfluorohexanoic acid in river soils to identify the influence of the degradation on the perfluorocarboxylic acids (PFCAs) in the Yodo River Basin. We also investigated the influence of abiotic oxidation on the formation of PFCAs in soils and measured the fluorotelomer alcohols (FTOHs) as precursors of PFCAs in the soil and air samples collected at Osaka and Kyoto. No major degradations were observed in soils contaminated with PFCA during the 24-week experimental period, while the PFOA levels increased only in the control group. The PFCA levels significantly increased after oxidation in this group. The dominant FTOH in soils was 10:2 FTOH, whereas 6:2 FTOH was dominant in the air samples. These findings suggest that PFOA was rapidly removed from water system but persist in soils. Moreover, the results indicate the need to evaluate not only the PFCAs, but also the FTOHs and other precursors for the accurate prediction of PFCA accumulation and fates in the environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app