Validation of the ARIC prediction model for sudden cardiac death in the European population: The ESCAPE-NET project: Predicting sudden cardiac death in European adults.
American Heart Journal 2023 April 20
BACKGROUND: Sudden cardiac death is responsible for 10-20% of all deaths in Europe. The current study investigates how well the risk of sudden cardiac death can be predicted. To this end, we validated a previously developed prediction model for sudden cardiac death from the Atherosclerosis Risk in Communities study (USA).
METHODS: Data from participants of the Copenhagen City Heart Study (CCHS) (n=9988) was used to externally validate the previously developed prediction model for sudden cardiac death. The model's performance was assessed through discrimination (C-statistic) and calibration by the Hosmer-Lemeshow goodness-of-fit (HL) statistics suited for censored data and visual inspection of calibration plots. Additional validation was performed using data from the Hoorn Study (N=2045), employing the same methods.
RESULTS: During ten years of follow-up of CCHS participants (mean age: 58.7 years, 56.2% women), 425 experienced SCD (4.2%). The prediction model showed good discrimination for sudden cardiac death risk (C-statistic: 0.81, 95% CI:0.79-0.83). Calibration was robust (HL statistic: p=0.8). Visual inspection of the calibration plot showed that the calibration could be improved. Sensitivity was 89.8%, and specificity was 60.6%. The positive and negative predictive values were 10.1% and 99.2%. Model performance was similar in the Hoorn Study (C-statistic: 0.81, 95% CI: 0.77-0.85 and the HL statistic: 1.00).
CONCLUSION: Our study showed that the previously developed prediction model in North American adults performs equally well in identifying those at risk for sudden cardiac death in a general North-West European population. However, the positive predictive value is low.
METHODS: Data from participants of the Copenhagen City Heart Study (CCHS) (n=9988) was used to externally validate the previously developed prediction model for sudden cardiac death. The model's performance was assessed through discrimination (C-statistic) and calibration by the Hosmer-Lemeshow goodness-of-fit (HL) statistics suited for censored data and visual inspection of calibration plots. Additional validation was performed using data from the Hoorn Study (N=2045), employing the same methods.
RESULTS: During ten years of follow-up of CCHS participants (mean age: 58.7 years, 56.2% women), 425 experienced SCD (4.2%). The prediction model showed good discrimination for sudden cardiac death risk (C-statistic: 0.81, 95% CI:0.79-0.83). Calibration was robust (HL statistic: p=0.8). Visual inspection of the calibration plot showed that the calibration could be improved. Sensitivity was 89.8%, and specificity was 60.6%. The positive and negative predictive values were 10.1% and 99.2%. Model performance was similar in the Hoorn Study (C-statistic: 0.81, 95% CI: 0.77-0.85 and the HL statistic: 1.00).
CONCLUSION: Our study showed that the previously developed prediction model in North American adults performs equally well in identifying those at risk for sudden cardiac death in a general North-West European population. However, the positive predictive value is low.
Full text links
Trending Papers
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app