We have located links that may give you full text access.
Expression of pannexin1 in lung cancer brain metastasis and immune microenvironment.
Brain metastases are the most common central nervous system malignancy, and the leading cause of cancer-related deaths. Non-small cell lung carcinomas (NSCLC) comprise the most common cell of origin. Immunotherapy, particularly checkpoint inhibitors, has emerged as the standard of care for many patients with advanced lung cancer. Pannexin1 (PANX1) is a transmembrane glycoprotein that forms large-pore channels and has been reported to promote cancer metastasis. However, the roles of PANX1 in lung cancer brain metastases and tumor immune microenvironment have not been characterized. 42 patient-matched formalin-fixed paraffin-embedded tissue samples from lung carcinomas and the subsequent brain metastases were constructed into three tissue microarrays (TMAs). PANX1 and markers of tumor-infiltrating immune cells (CD3, CD4, CD8, CD68, and TMEM119) were assessed using immunohistochemistry and digital image analysis. The expression of PANX1 was significantly higher in brain metastases than in their paired primary lung carcinoma. The high levels of PANX1 in lung carcinoma cells in the brain inversely correlated with infiltration of peripheral blood-derived macrophages. Our findings highlight the role of PANX1 in the progression of metastatic NSCLC, and the potential therapeutic approach of targeting PANX1 enhances the efficacy of immune checkpoint inhibitors in brain metastasis.
Full text links
Trending Papers
Restrictive fluid resuscitation in septic shock patients has lower mortality and organ dysfunction rates than standard therapy.Shock 2023 November 11
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app