We have located links that may give you full text access.
Toxicologic Pathology Forum Opinion: Interpretation of Gliosis in the Brain and Spinal Cord Observed During Nonclinical Safety Studies.
Toxicologic Pathology 2023 April 15
Gliosis, defined as a nonneoplastic reaction (hypertrophy and/or proliferation) of astrocytes and/or microglial cells, is a frequent finding in the central nervous system (CNS [brain and/or spinal cord]) in nonclinical safety studies. Gliosis in rodents and nonrodents occurs at low incidence as a spontaneous finding and is induced by various test articles (e.g., biomolecules, cell and gene therapies, small molecules) delivered centrally (i.e., by injection or infusion into cerebrospinal fluid or neural tissue) or systemically. Several CNS gliosis patterns occur in nonclinical species. First, gliosis may accompany degeneration and/or necrosis of cells (mainly neurons) or neural parenchyma (neuron processes and myelin). Second, gliosis often follows inflammation (i.e., leukocyte accumulation causing parenchymal damage) or neoplasm formation. Third, gliosis may appear as variably sized, randomly scattered foci of reactive glial cells in the absence of visible parenchymal damage or inflammation. In interpreting test article-related CNS gliosis, adversity is indicated by parenchymal injury (e.g., degeneration, necrosis, or inflammation) and not the mere existence of a glial reaction. In the absence of clear structural damage to the parenchyma, gliosis as a standalone CNS finding should be interpreted as a nonadverse reaction to regional alterations in microenvironmental conditions rather than as evidence of a glial reaction associated with neurotoxicity.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app