Excellent Ultraviolet Blocking Properties of Chiral Nematic Liquid Crystals.
Photochemistry and Photobiology 2023 April 14
We report the evaluation of chiral nematic liquid crystal (CNLC) in blocking ultraviolet (UV). The CNLC was coated on calcium fluoride substrate to measure the spectral transmittance, was measured to detect the UV blocking effect of CNLC. The results show that CNLC could reduce UVB (290-320 nm) by 99.9% and UVA (320-400 nm) by 95.6%. The barrier effect of cake-shaped semi-solidified CNLC microspheres was further investigated, and it was found that cake-shaped semi-solidified CNLC microspheres could reduce UVB by 58.2% and UVA by 34.1%. This is due to the chemical absorption property of CNLC, which has UV absorbing functional groups such as the benzene rings. And the physical reflection properties of CNLC could periodically reflect a certain wavelength of light. Liquid crystal (LC) is a rich set of soft materials with rod-like structures widely existing in nature, which is harmless to the human body and environment. Therefore, using CNLC's function of blocking UV, a new sunscreen can be developed.
Full text links
Trending Papers
The pathophysiology, diagnosis, and management of sepsis-associated disseminated intravascular coagulation.Journal of Intensive Care 2023 May 24
Abdominal wall closure.British Journal of Surgery 2023 September 16
Diagnosis and management of prolactin-secreting pituitary adenomas: a Pituitary Society international Consensus Statement.Nature Reviews. Endocrinology 2023 September 6
MRI abnormalities in Creutzfeldt-Jakob disease and other rapidly progressive dementia.Journal of Neurology 2023 September 13
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app