Add like
Add dislike
Add to saved papers

Long non-coding RNA DANCR alleviates acute myocardial infarction damage via regulating microRNA-509-5p/KLF transcription factor 13 pathway.

Acute myocardial infarction (AMI) is the most important cause of death among cardiovascular diseases. Long noncoding RNAs (lncRNAs) have been widely implicated in the regulation of AMI progression. Discrimination antagonizing nonprotein coding RNA (DANCR) alleviated hypoxia-caused cardiomyocyte damages, and the underlying mechanisms remain unclear. Here, we investigated the function and mechanism of DANCR in hypoxia-induced cardiomyocytes and AMI model by enzyme-linked immunosorbent assay, reactive oxygen species and adenosine triphosphate measurement, and mitochondrial activity determination. Additionally, luciferase reporter assay, immunoblotting, and qRT-PCR were performed to validate the interactions between DANCR/miR-509-5p and miR-509-5p/Kruppel-like factor 13 (KLF13). The role of DANCR was also verified in AMI model by overexpression. Our results showed that DANCR expression was significantly downregulated in hypoxia-induced cardiomyocytes or AMI model. Overexpression of DANCR significantly alleviated mitochondrial damages, reduced inflammation, and improved cardiac function in the AMI model. Furthermore, we demonstrated that miR-509-5p/KLF13 axis mediated the protective effect of DANCR. The current study highlighted the critical role of DANCR in alleviating AMI progression through targeting the miR-509-5p/KLF13 signaling axis, suggesting that DANCR may serve as a potential diagnostic marker or therapeutic target for AMI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app