We have located links that may give you full text access.
Could vitamin D protect against high fat diet induced damage in the arcuate nucleus in the rat: histological, immunohistochemical and ultrastructural study.
Ultrastructural Pathology 2023 March 29
Obesity is a serious health issue. As regard, the central nervous system, obesity induces neuronal damage. Vitamin D has well-known anti-inflammatory and neuroprotective effects. To detect if vitamin D protects against damage in the arcuate nucleus induced by a high fat-high fructose diet. Forty adult rats were used, and four groups were formed. Group I (negative control) kept on a standard chow diet for six weeks, Group II (positive control) received vitamin D orally once every other day for six weeks, Group III (high fat-high fructose treated group) was given high fat-high fructose diets for six weeks and Group IV (high fat-high fructose and vitamin D treated group) were given high fat-high fructose diets concomitantly with vitamin D for six weeks. High fat-high fructose diet markedly caused histological changes in arcuate neurons as nuclei appeared darkly stained and shrunken with condensed chromatin, and the nucleolus became less prominent. The cytoplasm appeared rarefied with loss of most of the organelles. An increase in neuroglial cells was noticed. The synaptic area showed sparse degenerated mitochondria and a disrupted presynaptic membrane. A high-fat diet has a damaging effect on arcuate neurons and vitamin D alleviates these effects.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app