Add like
Add dislike
Add to saved papers

Evaluation of In-Die Compression Data for a Deeper Understanding of Altered Excipient Properties upon Temperature Rise.

AAPS PharmSciTech 2023 March 29
The thermodynamic analysis of tablet formation includes the thermal and mechanical analysis during compression. The aim of this study was to evaluate alterations of force-displacement data upon temperature rise as an indicator for changed excipient properties. The tablet press was equipped with a thermally controlled die to imitate the heat evolution from tableting on an industrial scale. Six predominantly ductile polymers with a comparably low glass transition temperature were tableted at temperatures ranging from 22-70°C. Lactose served as a brittle reference with a high melting point. The energy analysis included the net and recovery work during compression, from which the plasticity factor was calculated. The respective results were compared to the changes in compressibility obtained via Heckel analysis. Elevated temperatures reduced the necessary work for plastic deformation for the ductile polymers, which was reflected in decreasing values for the net work of compaction and the plasticity factor. The recovery work slightly increased for the maximum tableting temperature. Lactose showed no response to temperature variations. Changes in the net work of compaction showed a linear correlation to the changes in yield pressure, which could be correlated to the glass transition temperature of a material. It is therefore possible to detect material alterations directly from the compression data, if the glass transition temperature of a material is sufficiently low.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app