Add like
Add dislike
Add to saved papers

DHMMF, a natural flavonoid from Resina Draconis, inhibits hepatocellular carcinoma progression via inducing apoptosis and G2/M phase arrest mediated by DNA damage-driven upregulation of p21.

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and is extremely malignant in nature. It is an important way to discover anti-cancer drugs from natural products at present. (R)-7,3'-dihydroxy-4'-methoxy-8-methylflavane (DHMMF), a natural flavonoid, was isolated from Resina Draconis which is the red resin from Dracaena cochinchinensis (Lour.) S. C. Chen. However, the anti-hepatoma effect and underlying mechanisms of DHMMF remain unclear. Herein, we demonstrated that DHMMF treatment significantly inhibited the proliferation of human hepatoma HepG2 and SK-HEP-1 cells. The IC50 value of DHMMF for HepG2 and SK-HEP-1 cells were 0.67 μM and 0.66 μM, respectively, while the IC50 value of DHMMF for human normal liver LO2 cells was 120.60 μM. DHMMF induced DNA damage, apoptosis, and G2/M phase arrest in HepG2 and SK-HEP-1 cells. Furthermore, the anti-proliferative and pro-apoptotic effects of DHMMF in human hepatoma cells were mediated by the upregulation of p21. Importantly, DHMMF exhibited potent anti-HCC efficacy in a xenograft mice model and an orthotopic mice model of liver cancer. Additionally, the combined administration of DHMMF and polo-like kinase 1 (PLK1) inhibitor BI 6727 showed a synergistic anti-HCC efficacy. Collectively, we demonstrated that DHMMF treatment induced apoptosis and G2/M phase arrest via DNA damage-driven upregulation of p21 expression in human hepatoma cells. DHMMF may serve as a promising drug candidate for HCC treatment, especially for patients of HCC with low p21 expression. Our results also suggested that DHMMF treatment in combination with PLK1 inhibitor may serve as a potential treatment strategy for patients with HCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app