Add like
Add dislike
Add to saved papers

Development and validation of a deep learning model using convolutional neural networks to identify femoral internal fixation device in radiographs.

Skeletal Radiology 2023 March 26
OBJECTIVE: The purpose of this study is to develop and validate a deep convolutional neural network (DCNN) model to automatically identify the manufacturer and model of hip internal fixation devices from anteroposterior (AP) radiographs.

MATERIALS AND METHODS: In this retrospective study, 1721 hip AP radiographs, including six internal fixation devices from 1012 patients, were collected from an orthopedic center between June 2014 and June 2022 to establish a classification network. The images were divided into training set (1106 images), validation set (272 images), and test set (343 images). The model efficacy is evaluated by using the data on the test set. The overall TOP-1 accuracy, and the precision, sensitivity, specificity, and F1 score of each model are calculated, and receiver operating characteristic (ROC) curves are plotted to evaluate the model performance. Gradient-weighted class activation mapping (Grad-CAM) images are used to determine the image features that are most important for DCNN decisions.

RESULTS: A total of 1378 (80%) images were used for model development, and model efficacy was validated on a test set with 343 (20%) images. The overall TOP-1 accuracy was 98.5%. The area under the receiver operating characteristic curve (AUC) values for each internal fixation model were 1.000, 1.000, 0.980, 1.000, 0.999, and 1.000, respectively. Gradient-weighted class activation mapping showed the unique design of the internal fixation device.

CONCLUSION: We developed a deep convolutional neural network model that can identify the manufacturer and model of hip internal fixation devices from the hip AP radiographs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app