Add like
Add dislike
Add to saved papers

The role of decision tree and machine learning models for outcome prediction of bupropion exposure: A nationwide analysis of more than 14 000 patients in the United States.

Bupropion is widely used for the treatment of major depressive disorder and for smoking cessation assistance. Unfortunately, there are no practical systems to assist clinicians or poison centres in predicting outcomes based on clinical features. Hence, the purpose of this study was to use a decision tree approach to inform early diagnosis of outcomes secondary to bupropion overdose. This study utilized a dataset from the National Poison Data System, a 6-year retrospective cohort study on toxic exposures and patient outcomes. A machine learning algorithm (decision tree) was applied to the dataset using the sci-kit-learn library in Python. Shapley Additive exPlanations (SHAP) were used as an explainable method. Comparative analysis was performed using random forest (RF), Gradient Boosting classification, eXtreme Gradient Boosting, Light Gradient Boosting (LGM) and voting ensembling. ROC curve and precision-recall curve were used to analyse the performance of each model. LGM and RF demonstrated the highest performance to predict outcome of bupropion exposure. Multiple seizures, conduction disturbance, intentional exposure, and confusion were the most influential factors to predict the outcome of bupropion exposure. Coma and seizure, including single, multiple and status, were the most important factors to predict major outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app