JOURNAL ARTICLE
REVIEW
Identifying new drugs and targets to treat rapidly elevated intraocular pressure for angle closure and secondary glaucomas to curb visual impairment.
Experimental Eye Research 2023 March 22
A multitude of pharmacological compounds have been shown to lower and control intraocular pressure (IOP) in numerous species of animals and human subjects after topical ocular dosing or via other routes of administration. Most researchers have been interested in finding drug candidates that exhibit a relatively long duration of action from a chronic therapeutic use perspective, for example to treat ocular hypertension (OHT), primary open-angle glaucoma and even normotensive glaucoma. However, it is equally important to seek and characterize treatment modalities which offer a rapid onset of action to help provide fast relief from quickly rising IOP that occurs in certain eye diseases. These include acute angle-closure glaucoma, primary angle-closure glaucoma, uveitic and inflammatory glaucoma, medication-induced OHT, and other secondary glaucomas induced by eye injury or infection which can cause partial or complete loss of eyesight. Such fast-acting agents can delay or prevent the need for ocular surgery which is often used to lower the dangerously raised IOP. This research survey was therefore directed at identifying agents from the literature that demonstrated ocular hypotensive activity, normalizing and unifying the data, determining their onset of action and rank ordering them on the basis of rapidity of action starting within 30-60 min and lasting up to at least 3-4 hrs post topical ocular dosing in different animal species. This research revealed a few health authority-approved drugs and some investigational compounds that appear to meet the necessary criteria of fast onset of action coupled with significant efficacy to reduce elevated IOP (by ≥ 20%, preferably by >30%). However, translation of the novel animal-based findings to the human conditions remains to be demonstrated but represent viable targets, especially EP2 -receptor agonists (e.g. omidenepag isopropyl; AL-6598; butaprost), mixed activity serotonin/dopamine receptor agonists (e.g. cabergoline), rho kinase inhibitors (e.g. AMA0076, Y39983), CACNA2D1-gene product inhibitors (e.g. pregabalin), melatonin receptor agonists, and certain K+ -channel openers (e.g. nicorandil, pinacidil). Other drug candidates and targets were also identified and will be discussed.
Full text links
Trending Papers
Carvedilol, probably the β-blocker of choice for everyone with cirrhosis and portal hypertension: But not so fast!Liver International : Official Journal of the International Association for the Study of the Liver 2023 June
The five types of glomerulonephritis classified by pathogenesis, activity, and chronicity (GN-AC).Nephrology, Dialysis, Transplantation 2023 May 23
Syndrome of Inappropriate Antidiuresis: From Pathophysiology to Management.Endocrine Reviews 2023 March 29
American Gastroenterological Association-American College of Gastroenterology Clinical Practice Guideline: Pharmacological Management of Chronic Idiopathic Constipation.Gastroenterology 2023 June
The future of intensive care: the study of the microcirculation will help to guide our therapies.Critical Care : the Official Journal of the Critical Care Forum 2023 May 17
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app