Add like
Add dislike
Add to saved papers

Imaging the Dynamics of Metal Ion-Coupled Electron Transfer on Material Surfaces with Redox/Photo Active Chelators.

Analytical Chemistry 2023 March 24
Metal ions on surfaces of various materials as bulk matrices, doped structural units, or functionalized active sites play critical roles in the establishment of physical and chemical properties. Characterization of surface-bound metal ions and metal ion-coupled electron transfer are urgently needed for the determination of material structures as well as for understanding the relationship to macroscopic properties and technological applications. We present here a mass spectrometric (MS) technique that allows the monitoring of metal ion-coupled electron transfer along with spatial distributions, identities, quantities, valences, redox activities, and associated anions. It is based on the coordination of metal ions with chelators that are redox/photo active. Upon the irradiation of a focused laser beam, metal ions on material surfaces that are covered with chelators are evaporated, ionized, and detected with MS. This technique clearly reveals ligand-metal/metal-ligand and ligand-bridged electron transfers through MS or tandem MS/MS experiments. MS images of metal ions on material surfaces with the spatial resolution down to the sub-micrometer level have been obtained. It has been applied to the monitoring of hot electron transfer, leftover positive metal ions in localized surface plasmon resonance, and photocatalytic activities of crystalline facets of TiO2 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app