JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Boundary-oriented Network for Automatic Breast Tumor Segmentation in Ultrasound Images.

Breast cancer is considered as the most prevalent cancer. Using ultrasound images is a momentous clinical diagnosis method to locate breast tumors. However, accurate segmentation of breast tumors remains an open problem due to ultrasound artifacts, low contrast, and complicated tumor shapes in ultrasound images. To address this issue, we proposed a boundary-oriented network (BO-Net) for boosting breast tumor segmentation in ultrasound images. The BO-Net boosts tumor segmentation performance from two perspectives. Firstly, a boundary-oriented module (BOM) was designed to capture the weak boundaries of breast tumors by learning additional breast tumor boundary maps. Second, we focus on enhanced feature extraction, which takes advantage of the Atrous Spatial Pyramid Pooling (ASPP) module and Squeeze-and-Excitation (SE) block to obtain multi-scale and efficient feature information. We evaluate our network on two public datasets: Dataset B and BUSI. For the Dataset B, our network achieves 0.8685 in Dice, 0.7846 in Jaccard, 0.8604 in Precision, 0.9078 in Recall, and 0.9928 in Specificity. For the BUSI dataset, our network achieves 0.7954 in Dice, 0.7033 in Jaccard, 0.8275 in Precision, 0.8251 in Recall, and 0.9814 in Specificity. Experimental results show that BO-Net outperforms the state-of-the-art segmentation methods for breast tumor segmentation in ultrasound images. It demonstrates that focusing on boundary and feature enhancement creates more efficient and robust breast tumor segmentation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app