Add like
Add dislike
Add to saved papers

Long Acting Ionically Paired Pamoate-based Suspension of Lurasidone: An exploration of Size Effects on in vitro Dissolution and in vivo Pharmacokinetic Behaviors.

AAPS PharmSciTech 2023 March 23
Latuda® is an oral tablet approved by the US Food and Drug Administration (FDA) for the treatment of schizophrenia. However, the clinical efficacy of Latuda® is compromised by patient noncompliance due to frequent daily administration, especially for patients experiencing severe schizophrenia, whose medication is often needed for several months to years. Hence, developing a long-acting injectable formulation of lurasidone is urgently needed. Herein, a poorly water-soluble lurasidone pamoate (LP) salt was synthesized via the facile ion pair-based salt formation technology. The solubility of LP was decreased by 233 folds compared with that of lurasidone hydrochloride (LH). Furthermore, suspensions of LH and LP with three different particle sizes, including 400 nm small-sized nanocrystals (SNCs), 4 μm medium-sized microcrystals (MMCs), and 15 μm large-sized microcrystals (LMCs) were prepared and characterized by powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC). The in vitro release results showed that particle sizes had great effects on the sustained release of LH, where large-sized particles exhibited superior sustained release than the smaller ones. Besides, LP suspensions exhibited better sustained release than LH suspensions at the same size scale. Moreover, the pharmacokinetics showed that LP LMCs produced an extended in vivo intramuscularly injectable profile for up to 45 days, which was 10 days longer than that of the LH LMCs. Our findings demonstrated that particle size had appreciable impacts on drug sustained release and provided valuable knowledge for the rational design of optimized micronized suspensions for long-acting injectables.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app