Amplification-Free COVID-19 Detection by Digital Droplet REVEALR.
ACS Synthetic Biology 2023 March 23
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, exposed a pressing need for new public health tools for pathogen detection, disease diagnosis, and viral genotyping. REVEALR (RNA-encoded viral nucleic acid analyte reporter) is an isothermal DNAzyme-based point-of-care diagnostic that functions with a detection limit of ∼10 copies/μL when coupled with a preamplification step and can be utilized for viral genotyping of SARS-CoV-2 variants of concern through base pair mismatch recognition in a competitive binding format. Here, we describe an advanced REVEALR platform, termed digital droplet REVEALR (ddREVEALR), that can achieve direct viral detection and absolute sample quantitation utilizing a signal amplification strategy that relies on chemical modifications, DNAzyme multiplexing, and volume compression. Using an AI-assisted image-based readout, ddREVEALR was found to achieve 95% positive predictive agreement from a set of 20 nasal pharyngeal swabs collected at UCI Medical Center in Orange, California. We propose that the combination of amplification-free and protein-free analysis makes ddREVEALR a promising application for direct viral RNA detection of clinical samples.
Full text links
Trending Papers
2023 Guideline for the Management of Patients With Aneurysmal Subarachnoid Hemorrhage: A Guideline From the American Heart Association/American Stroke Association.Stroke; a Journal of Cerebral Circulation 2023 May 23
How to improve the efficiency and the safety of real-time ultrasound-guided central venous catheterization in 2023: a narrative review.Annals of Intensive Care 2023 May 26
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app