Add like
Add dislike
Add to saved papers

DAB2IP-knocking down resulted in radio-resistance of breast cancer cells is associated with increased hypoxia and vasculogenic mimicry formation.

Purpose: As a part of breast-conserving therapy (BCT), postoperative radiotherapy is one of the main means to improve the clinical efficacy of breast cancer (BCa). However, ionizing radiation (IR) may induce BCa cells to develop radioresistance, which causes tumor recurrence and metastasis after treatment. Recently, DOC-2/DAB2 interactive protein (DAB2IP) has been reported often down-regulated in a variety of cancers and is related to tumor tolerance to radiotherapy. In this study, BCa cell lines were introduced to study how DAB2IP deficient influenced BCa cell radiosensitivity in vitro and in vivo and discuss the possible mechanism. Methods and Materials: Small RNA interference system (siRNA) was employed to decrease DAB2IP expression in two BCa cell lines, MDA-MB-231 and 4T1. Cells in response to IR or antineoplastics were detected by clone formation assay or MTT method, respectively. For in vivo studies, siDAB2IP or siControl cells were subcutaneously injected into the right flank of each female mouse. Sphere formation assay, soft agar colony anchoring assay and in vivo tumorigenesis assay were implemented to examine the stem cell-like features of BCa cells. Tube formation assay as well as immunofluorescence assay (IFA) were respectively applied to determine the angiogenesis of tumor cells in vitro and in vivo. The expression of a series of angiogenesis-related molecules was analyzed by qRT-PCR, western blot and IFA. Results: It was observed that the downregulation of DAB2IP could significantly improve the clone formation ability of BCa cells, reduce their sensitivity to radiation and chemotherapy drugs, enhance their migration and invasion abilities and increase their stemness characteristics. It was also noted that either DAB2IP-knocking down or treated with the conditioned medium from DAB2IP-deficient BCa cells could promote the tube-forming ability of the endothelial cell. Similarly, in vivo studies showed that tumors developed from siDAB2IP BCa cells had higher tumor microvascular density (MVD) and more severe oxygen deficiency than that in DAB2IP- sufficient tumors. Meanwhile, Knock-down of DAB2IP inhibited vascular maturation and promoted the formation of vasculogenic mimicry (VM) in BCa tissues. Down-regulation of STAT3 could enhance siDAB2IP cells sensitivity to IR, accompanied by the decrease of VEGF expression. Conclusions: Our data support that loss of DAB2IP confers radio-resistance of BCa could be due to increased hypoxia, inhibited vascular maturation and promoted VM formation. STAT3 inhibition could be a potential way to overcome such DAB2IP-deficient induced tolerance in BCT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app