JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Muscle PARP1 inhibition extends lifespan through AMPKα PARylation and activation in Drosophila .

Poly(ADP-ribose) polymerase-1 (PARP1) has been reported to play an important role in longevity. Here, we showed that the knockdown of the PARP1 extended the lifespan of Drosophila , with particular emphasis on the skeletal muscle. The muscle-specific mutant Drosophila exhibited resistance to starvation and oxidative stress, as well as an increased ability to climb, with enhanced mitochondrial biogenesis and activity at an older age. Mechanistically, the inhibition of PARP1 increases the activity of AMP-activated protein kinase alpha (AMPKα) and mitochondrial turnover. PARP1 could interact with AMPKα and then regulate it via poly(ADP ribosyl)ation (PARylation) at residues E155 and E195. Double knockdown of PARP1 and AMPKα, specifically in muscle, could counteract the effects of PARP1 inhibition in Drosophila . Finally, we showed that increasing lifespan via maintaining mitochondrial network homeostasis required intact PTEN induced kinase 1 (PINK1). Taken together, these data indicate that the interplay between PARP1 and AMPKα can manipulate mitochondrial turnover, and be targeted to promote longevity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app