Add like
Add dislike
Add to saved papers

Pharmacokinetic-Pharmacodynamic Target Attainment Analyses Evaluating Omadacycline Dosing Regimens for the Treatment of Patients with Community-Acquired Bacterial Pneumonia Arising from Streptococcus pneumoniae and Haemophilus influenzae.

Omadacycline, a novel aminomethylcycline with in vitro activity against Gram-positive and -negative organisms, including Streptococcus pneumoniae and Haemophilus influenzae, is approved in the United States to treat patients with community-acquired bacterial pneumonia (CABP). Using nonclinical pharmacokinetic-pharmacodynamic (PK-PD) targets for efficacy and in vitro surveillance data for omadacycline against S. pneumoniae and H. influenzae, and a population pharmacokinetic model, PK-PD target attainment analyses were undertaken using total-drug epithelial lining fluid (ELF) and free-drug plasma exposures to evaluate omadacycline 100 mg intravenously (i.v.) every 12 h or 200 mg i.v. every 24 h (q24h) on day 1, followed by 100 mg i.v. q24h on day 2 and 300 mg orally q24h on days 3 to 5 for patients with CABP. Percent probabilities of PK-PD target attainment on days 1 and 2 by MIC were assessed using the following four approaches for selecting PK-PD targets: (i) median, (ii) second highest, (iii) highest, and (iv) randomly assigned total-drug ELF and free-drug plasma ratio of the area under the concentration-time curve to the MIC (AUC/MIC ratio) targets associated with a 1-log10 CFU reduction from baseline. Percent probabilities of PK-PD target attainment based on total-drug ELF AUC/MIC ratio targets on days 1 and 2 were ≥91.1% for S. pneumoniae for all approaches but the highest target and ≥99.2% for H. influenzae for all approaches at MIC90 s (0.12 and 1 μg/mL for S. pneumoniae and H. influenzae, respectively). Lower percent probabilities of PK-PD target attainment based on free-drug plasma AUC/MIC ratio targets were observed for randomly assigned and the highest free-drug plasma targets for S. pneumoniae and for all targets for H. influenzae. These data provided support for approved omadacycline dosing regimens to treat patients with CABP and decisions for the interpretive criteria for the in vitro susceptibility testing of omadacycline against these pathogens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app