JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ligature-Induced Periodontitis Drives Colorectal Cancer: An Experimental Model in Mice.

Periodontitis is a prevalent inflammatory oral disease associated with an increased risk of colorectal cancer. Experimental animal models are critical tools to investigate the effects and mechanisms of periodontitis on colorectal cancer. Several murine periodontitis models have been used in research, including oral gavage, periodontal pathogen injection, and ligature models. The role of experimental periodontitis caused by silk ligation in colorectal cancer remains unclear. In this study, we used an experimental periodontitis model on a colitis-associated colorectal cancer model and a spontaneous model, respectively. We observed the promotion of colorectal cancer in ligature-induced periodontitis mice compared to those control mice in 2 different models, as assessed by tumor number, tumor size, and tumor load. Since bacterial dysbiosis is an important feature of periodontitis, we next analyzed the oral and gut microbiomes using 16S ribosomal RNA gene sequencing. We found that the experimental periodontitis model reshaped the microbial community in the oral cavity and gut. In addition, we found a higher extent of programmed death 1 (PD-1)-positive CD8+ T-cell infiltration in tumor samples of the periodontitis group than in controls by immunofluorescence staining. Regarding the potential molecular mechanism, we transplanted the fecal microbiota of the periodontitis patient into mice and observed a tumor-promoting effect in the periodontitis group, assessed by tumor volume and tumor weight, together with a low level of INF-γ+ CD8+ T-cell infiltration in subcutaneous tumor mice. Taken together, we show that ligature-induced periodontitis model promotes colorectal cancer by microbiota remodeling and suppression of the immune response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app