We have located links that may give you full text access.
Convolution Neural Network Algorithm for Shockable Arrhythmia Classification Within a Digitally Connected Automated External Defibrillator.
Journal of the American Heart Association 2023 March 22
Background Diagnosis of shockable rhythms leading to defibrillation remains integral to improving out-of-hospital cardiac arrest outcomes. New machine learning techniques have emerged to diagnose arrhythmias on ECGs. In out-of-hospital cardiac arrest, an algorithm within an automated external defibrillator is the major determinant to deliver defibrillation. This study developed and validated the performance of a convolution neural network (CNN) to diagnose shockable arrhythmias within a novel, miniaturized automated external defibrillator. Methods and Results There were 26 464 single-lead ECGs that comprised the study data set. ECGs of 7-s duration were retrospectively adjudicated by 3 physician readers (N=18 total readers). After exclusions (N=1582), ECGs were divided into training (N=23 156), validation (N=721), and test data sets (N=1005). CNN performance to diagnose shockable and nonshockable rhythms was reported with area under the receiver operating characteristic curve analysis, F1, and sensitivity and specificity calculations. The duration for the CNN to output was reported with the algorithm running within the automated external defibrillator. Internal and external validation analyses included CNN performance among arrhythmias, often mistaken for shockable rhythms, and performance among ECGs modified with noise to mimic artifacts. The CNN algorithm achieved an area under the receiver operating characteristic curve of 0.995 (95% CI, 0.990-1.0), sensitivity of 98%, and specificity of 100% to diagnose shockable rhythms. The F1 scores were 0.990 and 0.995 for shockable and nonshockable rhythms, respectively. After input of a 7-s ECG, the CNN generated an output in 383±29 ms (total time of 7.383 s). The CNN outperformed adjudicators in classifying atrial arrhythmias as nonshockable (specificity of 99.3%-98.1%) and was robust against noise artifacts (area under the receiver operating characteristic curve range, 0.871-0.999). Conclusions We demonstrate high diagnostic performance of a CNN algorithm for shockable and nonshockable rhythm arrhythmia classifications within a digitally connected automated external defibrillator. Registration URL: https://clinicaltrials.gov/ct2/show/NCT03662802; Unique identifier: NCT03662802.
Full text links
Trending Papers
Monitoring Macro- and Microcirculation in the Critically Ill: A Narrative Review.Avicenna Journal of Medicine 2023 July
Euglycemic Ketoacidosis in Two Patients Without Diabetes After Introduction of Sodium-Glucose Cotransporter 2 Inhibitor for Heart Failure With Reduced Ejection Fraction.Diabetes Care 2023 November 22
ASA Consensus-based Guidance on Preoperative Management of Patients on Glucagon-like Peptide-1 Receptor Agonists.Anesthesiology 2023 November 21
Tranexamic Acid for Traumatic Injury in the Emergency Setting: A Systematic Review and Bias-Adjusted Meta-Analysis of Randomized Controlled Trials.Annals of Emergency Medicine 2023 November 22
Association between postinduction hypotension and postoperative mortality: a single-centre retrospective cohort study.Canadian Journal of Anaesthesia 2023 November 22
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app