Add like
Add dislike
Add to saved papers

Interaction between PD-L1 and soluble VEGFR1 in glioblastoma-educated macrophages.

BMC Cancer 2023 March 21
PURPOSE: The combined application of immune checkpoint inhibitors (ICIs) and anti-angiogenesis therapy has shown synergistic effects on glioblastoma (GBM). As important resources of PD-L1 in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) have significant impact of the efficiency of ICIs. However, the effects of anti-angiogenesis agents on immune checkpoints expression are not fully understood.

METHOD: GBM-educated macrophages were generated from circulating monocytes of healthy controls and GBM patients under the education of GBM cell line. Surface expression of PD-L1 and VEGFR1 on GBM-educated macrophages was analyzed. VEGFR1 NAb and soluble VEGFR1 (sVEGFR1) were added and their effects on PD-L1 expression on TAMs was investigated. Serum soluble PD-L1 (sPD-L1) and sVEGFR1 levels in GBM patients were measured and their correlation was analyzed.

RESULT: The expression intensity of PD-L1 on GBM-educated macrophages was higher and its up-regulation partially depends on VEGFR1 signaling pathway. GBM-educated macrophages secreted less levels of soluble VEGFR1 (sVEGFR1), and exogenous sVEGFR1 down-regulated PD-L1 expression intensity. PD-L1 blockade promoted the secretion of sVEGFR1. Finally, sVEGFR1 and sPD-L1 in serum of GBM patients were overexpressed, and a positive correlation was found.

CONCLUSION: These findings reveal the interaction between PD-L1 and VEGFR1 signaling pathway in GBM-educated macrophages. VEGFR1 is involved with PD-L1 overexpression, which can be impeded by autocrine regulation of sVEGFR1. sVEGFR1 secretion by GBM-educated macrophages can be promoted by PD-L1 blockade. Taken together, these findings provide evidences for the combined application of ICIs and anti-angiogenesis therapies in the treatment of GBM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app