Add like
Add dislike
Add to saved papers

CT Radiomics Predict EGFR-T790M Resistance Mutation in Advanced Non-Small Cell Lung Cancer Patients After Progression on First-line EGFR-TKI.

Academic Radiology 2023 March 19
RATIONALE AND OBJECTIVES: We aim to explore the value of chest CT radiomics in predicting the epidermal growth factor receptor (EGFR)-T790M resistance mutation of advanced non-small cell lung cancer (NSCLC) patients after the failure of first-line EGFR-tyrosine kinase inhibitor (EGFR-TKI).

MATERIALS AND METHODS: A total of 211 and 135 advanced NSCLC patients with tumor tissue-based (Cohort-1) or circulating tumor DNA (ctDNA)-based (Cohort-2) EGFR-T790M testing were included, respectively. Cohort-1 was used for modeling and Cohort-2 was for models' validation. Radiomic features were extracted from tumor lesions on chest nonenhanced CT (NECT) and/or contrast-enhanced CT (CECT). We used eight feature selectors and eight classifier algorithms to establish radiomic models. Models were evaluated by area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA).

RESULTS: CT morphological manifestations of peripheral location and pleural indentation sign were associated with EGFR-T790M. For NECT, CECT, and NECT+CECT radiomic features, the feature selector and classifier algorithms of LASSO and Stepwise logistic regression, Boruta and SVM, and LASSO and SVM were chosen to develop the optimal model, respectively (AUC: 0.844, 0.811, and 0.897). All models performed well in calibration curves and DCA. Independent validation of models in Cohort-2 revealed that both NECT and CECT models individually had limited power for predicting EGFR-T790M mutation detected by ctDNA (AUC: 0.649, 0.675), while the NECT+CECT radiomic model had a satisfactory AUC (0.760).

CONCLUSION: This study proved the feasibility of using CT radiomic features to predict the EGFR-T790M resistance mutation, which could be helpful in guiding personalized therapeutic strategies.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app