Add like
Add dislike
Add to saved papers

Reporting of Azithromycin Activity against Clinical Isolates of Extensively Drug-Resistant Salmonella enterica Serovar Typhi.

This study aimed to evaluate the minimum inhibitory concentration (MIC) of azithromycin (AZM) in clinical isolates of extensively drug-resistant (XDR) Salmonella Typhi (i.e., resistant to chloramphenicol, ampicillin, trimethoprim-sulfamethoxazole, fluoroquinolones, and third-generation cephalosporin) using the E-test versus the broth microdilution method (BMD). From January to June 2021, a retrospective cross-sectional study was carried out in Lahore, Pakistan. Antimicrobial susceptibility was performed initially by the Kirby-Bauer disk diffusion method for 150 XDR Salmonella enterica serovar Typhi isolates, and MICs of all the recommended antibiotics were determined by the VITEK 2 (BioMérieux) fully automated system using Clinical Laboratory Standard Institute (CLSI) 2021 guidelines. The E-test method was used to determine AZM MICs. These MICs were compared with the BMD, which is the method recommended by the CLSI but not adopted in routine laboratory reporting. Of 150 isolates, 10 (6.6%) were resistant by disk diffusion. Eight (5.3%) of these had high MICs against AZM by the E-test. Only three isolates (2%) were resistant by E-test, having an MIC of 32 μg/mL. All eight isolates had a high MIC by BMD with different MIC distributions, but only one was resistant, having an MIC of 32 μg/mL by BMD. The sensitivity, specificity, negative predictive value, positive predictive value, and diagnostic accuracy of the E-test method versus BMD were 98.65%,100%, 99.3%, 33.3%, and 98.6%, respectively. Similarly, the concordance rate was 98.6%, negative percent agreement was 100%, and positive percent agreement was 33%. The BMD is the most reliable approach for reporting AZM sensitivity in XDR S. Typhi compared with the E-test and disk diffusion methods. Potentially, AZM resistance in XDR S. Typhi is around the corner. Sensitivity patterns should be reported with MIC values, and if possible, higher values should be screened for the presence of any potential resistance genes. Antibiotic stewardship should be strictly implemented.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app