Add like
Add dislike
Add to saved papers

Expression and functional activity of myosin II in hyperplastic prostates of varying volumes.

Cellular Signalling 2023 March 18
Prostate volume (PV) differs dramatically among benign prostatic hyperplasia (BPH) patients. Estimation of PV is important to guide the most appropriate pharmacologic or interventional treatment approach. However, the underlying pathophysiological mechanisms for the differences in PV remain unknown. We recently found that the myosin II system might participate in the etiology and development of BPH via static and dynamic factors. Our present study aims to explore the expression and functional activities of myosin II isoforms including smooth muscle (SM) myosin II (SMM II) and non-muscle myosin II (NMM II) in hyperplastic prostates with varied PV. Human hyperplastic prostates and the testosterone-induced rat BPH model were employed for this study. Hematoxylin and Eosin (H&E), Masson's trichrome, immunohistochemical staining, in vitro organ bath, RT-polymerase chain reaction (PCR) and Western-blotting were performed. Also, a BPH tissue microarray (TMA) was constructed to determine the correlations between myosin II isoforms with clinical parameters of BPH patients. With the increase of PV, the expression of NMMHC-A, NMMHC-C, SM-A and LC17b isoforms were increased, and the contractility of prostate smooth muscle was enhanced but force developed more slowly. Consistently, NMMHC-A, NMMHC-C, SM-A and LC17b were correlated positively with PV. Similar outcomes were also observed in the BPH rat model with different PVs. Alterations in the expression and function of myosin the II system may be involved in the pathophysiological mechanism of PV differences between BPH patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app