Add like
Add dislike
Add to saved papers

MPA-capped CdTequantum dots induces endoplasmic reticulum stress-mediated autophagy and apoptosis through generation of reactive oxygen species in human liver normal cell and liver tumor cell.

The rapid developments in nanotechnology have brought increased attention to the safety of Quantum Dots (QDs). Exploring their mechanisms of toxicity and characterizing their toxic effects in different cell lines will help us better understand and apply QDs appropriately. This study aims to elucidate the importance of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress-induced autophagy for CdTe QDs toxicity, that is, the importance of the nanoparticles in mediating cellular uptake and consequent intracellular stress effects inside the cell. The results of the study showed that cancer cells and normal cells have different cell outcomes as a result of intracellular stress effects. In normal human liver cells (L02), CdTe QDs leads to ROS generation and prolong ER stress. The subsequent autophagosome accumulation eventually triggers apoptosis by activating proapoptotic signaling pathways and the expression of proapoptotic Bax. In contrast, in human liver cancer cells (HepG2 cells), expression of UPR restrains proapoptotic signaling and downregulates Bax, and activated protective cellular autophagy, as a result of protecting these liver cancer cells from CdTe QDs-induced apoptosis. In summary, we assess the safety of CdTe QDs and recounted the molecular mechanism underlying its nanotoxicity in normal and cancerous cells. Notwithstanding, additional detailed studies on the deleterious effects of these nanoparticles in the organisms of interest are required to ensure low-risk application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app