Add like
Add dislike
Add to saved papers

Ectopic expression of pigeonpea Orf147 gene imparts partial sterility in Cicer arietinum.

Gene 2023 March 17
Orf147, a cytotoxic peptide, has been found to cause cytoplasmic male sterility (CMS) in Cajanus cajanifolius (pigeonpea). In our study, Orf147 was introduced into self-pollinating Cicer arietinum (chickpea) using Agrobacterium-mediated transformation for induction of CMS. The stable integration and expression of the transgene has been assessed through PCR and qRT-PCR analysis. In addition, phenotypic sterility analysis has been performed, considering developmental parameters like flower development, pod formation and flower drop. Transgene inheritance analysis demonstrates that out of the five PCR positive events in the T0 generation, two events have segregated according to the Mendelian segregation ratio (3:1) in the T2 generation. Further, pollen viability test using microscopic analysis confirms the induction of partial CMS in transgenic chickpea. The study holds significant value regarding the heterosis of self-pollinating legumes like chickpea. As a part of the prospect, exploring inducible promoters of species-specific or related legumes would be the next step to developing a two-line hybrid system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app