Add like
Add dislike
Add to saved papers

Exposure to Bisphenol A induces abnormal fetal heart development by promoting ferroptosis.

BACKGROUND: Bisphenol A (BPA), a common endocrine-disrupting chemical (EDC), has been revealed to be closely associated with the induction of abnormal heart development, obesity, prediabetes, and other metabolic disorders. However, the underlying mechanism of maternal BPA exposure on fetal heart development abnormalities is not clear.

METHODS: To explore the adverse effects of BPA and its potential mechanism on heart development, C57BL/6 J mice and human cardiac AC-16 cells were used to conduct in vivo and in vitro studies. For the in vivo study, mice were exposed to low-dose BPA (40 mg/(kg·bw)) and high-dose BPA (120 mg/(kg·bw)) for 18 d during pregnancy. In vitro study, human cardiac AC-16 cells were exposed to BPA of various concentrations (0.01, 0.1, 1, 10, and 100 µM) for 24 h. Cell viability and ferroptosis were evaluated using 2,5-diphenyl-2 H-tetrazolium bromide (MTT), immunofluorescence staining, and western blotting.

RESULTS: In BPA-treated mice, the alterations of fetal cardiac structure were observed. Increased NK2 homeobox 5(Nkx2.5) was detected in vivo with the induction of ferroptosis, revealing that BPA induced abnormal fetal heart development. Furthermore, the results showed that SLC7A11 and SLC3A2 decreased in low- and high-dose BPA-treated groups, suggesting that system Xc- mediated BPA-induced abnormal fetal heart development via inhibiting the expression of GPX4. Observing AC-16 cells confirmed that cell viability declined significantly with various concentrations of BPA. Moreover, BPA exposure suppressed GPX4 expression by inhibiting System Xc- (the decrease of SLC3A2 and SLC7A11). Collectively, system Xc- modulating cell ferroptosis might play important in abnormal fetal heart development induced by BPA exposure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app