Add like
Add dislike
Add to saved papers

Can we design the next generation of digital health communication programs by leveraging the power of artificial intelligence to segment target audiences, bolster impact and deliver differentiated services? A machine learning analysis of survey data from rural India.

BMJ Open 2023 March 18
OBJECTIVES: Direct to beneficiary (D2B) mobile health communication programmes have been used to provide reproductive, maternal, neonatal and child health information to women and their families in a number of countries globally. Programmes to date have provided the same content, at the same frequency, using the same channel to large beneficiary populations. This manuscript presents a proof of concept approach that uses machine learning to segment populations of women with access to phones and their husbands into distinct clusters to support differential digital programme design and delivery.

SETTING: Data used in this study were drawn from cross-sectional survey conducted in four districts of Madhya Pradesh, India.

PARTICIPANTS: Study participant included pregnant women with access to a phone (n=5095) and their husbands (n=3842) RESULTS: We used an iterative process involving K-Means clustering and Lasso regression to segment couples into three distinct clusters. Cluster 1 (n=1408) tended to be poorer, less educated men and women, with low levels of digital access and skills. Cluster 2 (n=666) had a mid-level of digital access and skills among men but not women. Cluster 3 (n=1410) had high digital access and skill among men and moderate access and skills among women. Exposure to the D2B programme 'Kilkari' showed the greatest difference in Cluster 2, including an 8% difference in use of reversible modern contraceptives, 7% in child immunisation at 10 weeks, 3% in child immunisation at 9 months and 4% in the timeliness of immunisation at 10 weeks and 9 months.

CONCLUSIONS: Findings suggest that segmenting populations into distinct clusters for differentiated programme design and delivery may serve to improve reach and impact.


Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app