Add like
Add dislike
Add to saved papers

Evaluation of Fluid Leakage at The Coverall and Glove Interface in Single and Double Glove Conditions.

BACKGROUND: Fluid leakage through the glove-protective clothing interface is an area of concern for many healthcare personnel, including emergency medical service providers, who may wear coveralls to protect themselves from multiple types of hazards. There is currently no established standard test method to specifically evaluate the barrier performance of the glove-protective clothing interface region for any personal protective equipment ensemble.

OBJECTIVE: This study quantifies the fluid leakage at the coverall and glove interface using single and double gloving.

METHODS: A robotic arm, which can simulate upper extremity movements of healthcare personnel, was used to test five coverall models and an extended examination glove model in single and double glove conditions.

RESULTS: The results show that there was a significant difference in fluid leakage amounts between some of the coverall models and the number of glove layers studied. Findings also highlight that there is a high correlation between basis weight and stiffness of the coverall fabrics and the fluid leakage amounts.

CONCLUSIONS: These results underline that coverall constructed from thin and less stiff fabrics can result in lower fluid leakage levels. Also, there was no significant difference in fluid leakage amounts between single and double gloves when tested with each of the coverall models, with the exception of the coveralls with the highest basis weight and stiffness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app