Add like
Add dislike
Add to saved papers

Evaluation of ensemble strategy on the development of multiple view ankle fracture detection algorithm.

OBJECTIVE: To identify the feasibility and efficiency of deep convolutional neural networks (DCNNs) in the detection of ankle fractures and to explore ensemble strategies that applied multiple projections of radiographs.Ankle radiographs (AXRs) are the primary tool used to diagnose ankle fractures. Applying DCNN algorithms on AXRs can potentially improve the diagnostic accuracy and efficiency of detecting ankle fractures.

METHODS: A DCNN was trained using a trauma image registry, including 3102 AXRs. We separately trained the DCNN on anteroposterior (AP) and lateral (Lat) AXRs. Different ensemble methods, such as "sum-up," "severance-OR," and "severance-Both," were evaluated to incorporate the results of the model using different projections of view.

RESULTS: The AP/Lat model's individual sensitivity, specificity, positive-predictive value, accuracy, and F1 score were 79%/84%, 90%/86%, 88%/86%, 83%/85%, and 0.816/0.850, respectively. Furthermore, the area under the receiver operating characteristic curve (AUROC) of the AP/Lat model was 0.890/0.894 (95% CI: 0.826-0.954/0.831-0.953). The sum-up method generated balanced results by applying both models and obtained an AUROC of 0.917 (95% CI: 0.863-0.972) with 87% accuracy. The severance-OR method resulted in a better sensitivity of 90%, and the severance-Both method obtained a high specificity of 94%.

CONCLUSION: Ankle fracture in the AXR could be identified by the trained DCNN algorithm. The selection of ensemble methods can depend on the clinical situation which might help clinicians detect ankle fractures efficiently without interrupting the current clinical pathway.

ADVANCES IN KNOWLEDGE: This study demonstrated different ensemble strategies of AI algorithms on multiple view AXRs to optimize the performance in various clinical needs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app