Add like
Add dislike
Add to saved papers

Machine Learning-Based Prediction of Attention-Deficit/Hyperactivity Disorder and Sleep Problems With Wearable Data in Children.

JAMA Network Open 2023 March 2
IMPORTANCE: Early detection of attention-deficit/hyperactivity disorder (ADHD) and sleep problems is paramount for children's mental health. Interview-based diagnostic approaches have drawbacks, necessitating the development of an evaluation method that uses digital phenotypes in daily life.

OBJECTIVE: To evaluate the predictive performance of machine learning (ML) models by setting the data obtained from personal digital devices comprising training features (ie, wearable data) and diagnostic results of ADHD and sleep problems by the Kiddie Schedule for Affective Disorders and Schizophrenia Present and Lifetime Version for Diagnostic and Statistical Manual of Mental Disorders, 5th edition (K-SADS) as a prediction class from the Adolescent Brain Cognitive Development (ABCD) study.

DESIGN, SETTING, AND PARTICIPANTS: In this diagnostic study, wearable data and K-SADS data were collected at 21 sites in the US in the ABCD study (release 3.0, November 2, 2020, analyzed October 11, 2021). Screening data from 6571 patients and 21 days of wearable data from 5725 patients collected at the 2-year follow-up were used, and circadian rhythm-based features were generated for each participant. A total of 12 348 wearable data for ADHD and 39 160 for sleep problems were merged for developing ML models.

MAIN OUTCOMES AND MEASURES: The average performance of the ML models was measured using an area under the receiver operating characteristics curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). In addition, the Shapley Additive Explanations value was used to calculate the importance of features.

RESULTS: The final population consisted of 79 children with ADHD problems (mean [SD] age, 144.5 [8.1] months; 55 [69.6%] males) vs 1011 controls and 68 with sleep problems (mean [SD] age, 143.5 [7.5] months; 38 [55.9%] males) vs 3346 controls. The ML models showed reasonable predictive performance for ADHD (AUC, 0.798; sensitivity, 0.756; specificity, 0.716; PPV, 0.159; and NPV, 0.976) and sleep problems (AUC, 0.737; sensitivity, 0.743; specificity, 0.632; PPV, 0.036; and NPV, 0.992).

CONCLUSIONS AND RELEVANCE: In this diagnostic study, an ML method for early detection or screening using digital phenotypes in children's daily lives was developed. The results support facilitating early detection in children; however, additional follow-up studies can improve its performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app