Add like
Add dislike
Add to saved papers

Intracutaneous Transplantation of Islets within a Biodegradable Temporizing Matrix (BTM) as an Alternative Site for Islet Transplantation.

Diabetes 2023 March 17
Intra-hepatic islet transplantation for type-1 diabetes is limited by the need for multiple infusions and poor islet viability post-transplantation. The development of alternative transplantation sites is necessary to improve islet survival, and facilitate monitoring and retrieval. We tested a clinically proven Biodegradable Temporizing Matrix (BTM), a polyurethane-based scaffold, to generate a well vascularized intracutaneous "neo-dermis" within the skin for islet transplantation. In murine models, BTM did not impair syngeneic islet renal-subcapsular transplant viability or function, and facilitated diabetes cure for over 150 days. Further, BTM supported functional neonatal porcine islet transplants into RAG-1-/- mice for 400 days. Hence, BTM is non-toxic for islets. two-photon intravital imaging used to map vessel growth through time identified dense vascular networks, with significant collagen deposition and increases in vessel mass up to 30 days post-BTM implantation. In a pre-clinical porcine skin model, BTM implants created a highly-vascularized intracutaneous site by day 7 post-implantation. When syngeneic neonatal porcine islets were transplanted intracutaneously the islets remained differentiated as insulin producing cells, maintained normal islet architecture, secreted c-peptide, and survived for over 100 days. Here we show that BTM facilitates formation of an islet-supportive intracutaneous "neo-dermis" in a porcine pre-clinical model, as an alternative islet transplant site.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app