Add like
Add dislike
Add to saved papers

Transcriptional mechanism of the mouse β4-galactosyltransferase 6 gene in mouse neuroblastoma cell line Neuro-2a.

Lactosylceramide (Lac-Cer) constitutes the backbone structure of various gangliosides whose abnormal expression is associated with malignancy of neuroblastoma. The understanding of the regulatory mechanism of Lac-Cer contributes to the development of neuroblastoma therapy. In this study, the transcriptional mechanism of mouse β4-galactosyltransferase (β4GalT) 6, which is one of Lac-Cer synthase, was analyzed using mouse neuroblastoma cell line Neuro-2a. The -226 to -13 region relative to the most downstream transcriptional start site was determined to be the promoter region by luciferase assay using the 5'-deletion constructs. The mutation into the activating protein (AP) 4-binding site -110/-101 drastically decreased the promoter activity, indicating that this site is mainly implicated in the transcription. Furthermore, the mutation into the GATA-binding site -210/-201 or another AP4-binding site -202/-193 partially decreased the promoter activity. The study suggests that the mouse β4GalT6 gene is transcriptionally regulated by AP4 in cooperation with GATA family transcription factor in neuroblastoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app