The impact of attrition on the transmission of HIV and drug resistance: A mathematical modelling study.
AIDS 2023 March 7
BACKGROUND: Attrition due to loss to follow-up or termination of antiretroviral therapy (ART) among HIV-infected patients in care may increase the risk of emergence and transmission of drug resistance (TDR), diminish benefit of treatment, and increase morbidity and mortality. Understanding the impact of attrition on the epidemic is essential to provide interventions for improving retention in care.
METHODS: We developed a comprehensive HIV transmission dynamics model by considering CD4+ cell count dependent diagnosis, treatment, and attrition involving TDR and acquired drug resistance. The model was calibrated by 11 groups HIV/AIDS surveillance data during 2008-2018 from Guangxi, China, and validated by the prevalence of TDR among diagnosed treat-naive individuals. We aimed to investigate how attrition would affect the transmission of HIV and drug-resistance when expanding ART.
RESULTS: In the base case with CD4+ cell count dependent per capita attrition rates 0.025∼0.15 and treatment rates 0.23∼0.42, we projected cumulative total new infections, new drug-resistant infections, and HIV-related deaths over 2022-2030 would be 145 391, 7637, and 51 965, respectively. Increasing treatment rates by 0.1∼0.2 can decrease the above total new infections (deaths) by 1.63∼2.93% (3.52∼6.16%). However, even 0.0114∼0.0220 (0.0352∼0.0695) increase in attrition rates would offset this benefit of decreasing infections (deaths). Increasing treatment rates (attrition rates) by 0.05∼0.1 would increase the above drug-resistant infections by 0.16∼0.30% (22.18∼41.15%).
CONCLUSION: A minor increase in attrition can offset the benefit of treatment expansion and increase the transmission of HIV drug resistance. Reducing attrition rates for patients already in treatment may be as important as expanding treatment for untreated patients.
METHODS: We developed a comprehensive HIV transmission dynamics model by considering CD4+ cell count dependent diagnosis, treatment, and attrition involving TDR and acquired drug resistance. The model was calibrated by 11 groups HIV/AIDS surveillance data during 2008-2018 from Guangxi, China, and validated by the prevalence of TDR among diagnosed treat-naive individuals. We aimed to investigate how attrition would affect the transmission of HIV and drug-resistance when expanding ART.
RESULTS: In the base case with CD4+ cell count dependent per capita attrition rates 0.025∼0.15 and treatment rates 0.23∼0.42, we projected cumulative total new infections, new drug-resistant infections, and HIV-related deaths over 2022-2030 would be 145 391, 7637, and 51 965, respectively. Increasing treatment rates by 0.1∼0.2 can decrease the above total new infections (deaths) by 1.63∼2.93% (3.52∼6.16%). However, even 0.0114∼0.0220 (0.0352∼0.0695) increase in attrition rates would offset this benefit of decreasing infections (deaths). Increasing treatment rates (attrition rates) by 0.05∼0.1 would increase the above drug-resistant infections by 0.16∼0.30% (22.18∼41.15%).
CONCLUSION: A minor increase in attrition can offset the benefit of treatment expansion and increase the transmission of HIV drug resistance. Reducing attrition rates for patients already in treatment may be as important as expanding treatment for untreated patients.
Full text links
Trending Papers
Bleeding and Thrombotic Complications in Patients with Cirrhosis: A State of the Art Appraisal.Clinical Gastroenterology and Hepatology 2023 April 29
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app