Add like
Add dislike
Add to saved papers

Human Resistin Induces Cardiac Dysfunction in Pulmonary Hypertension.

Background Cardiac failure is the primary cause of death in most patients with pulmonary arterial hypertension (PH). As pleiotropic cytokines, human resistin (Hresistin) and its rodent homolog, resistin-like molecule α, are mechanistically critical to pulmonary vascular remodeling in PH. However, it is still unclear whether activation of these resistin-like molecules can directly cause PH-associated cardiac dysfunction and remodeling. Methods and Results In this study, we detected Hresistin protein in right ventricular (RV) tissue of patients with PH and elevated resistin-like molecule expression in RV tissues of rodents with RV hypertrophy and failure. In a humanized mouse model, cardiac-specific Hresistin overexpression was sufficient to cause cardiac dysfunction and remodeling. Dilated hearts exhibited reduced force development and decreased intracellular Ca2+ transients. In the RV tissues overexpressing Hresistin, the impaired contractility was associated with the suppression of protein kinase A and AMP-activated protein kinase. Mechanistically, Hresistin activation triggered the inflammation mediated by signaling of the key damage-associated molecular pattern molecule high-mobility group box 1, and subsequently induced pro-proliferative Ki67 in RV tissues of the transgenic mice. Intriguingly, an anti-Hresistin human antibody that we generated protected the myocardium from hypertrophy and failure in the rodent PH models. Conclusions Our data indicate that Hresistin is expressed in heart tissues and plays a role in the development of RV dysfunction and maladaptive remodeling through its immunoregulatory activities. Targeting this signaling to modulate cardiac inflammation may offer a promising strategy to treat PH-associated RV hypertrophy and failure in humans.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app