JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

The emerging role of circular RNAs in Parkinson's disease.

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and the most common movement disorder. It involves a gradual loss of dopaminergic neurons in the substantia nigra. Although many studies have been conducted, the underlying molecular pathways of PD remain largely unknown. Circular RNAs (circRNAs), a novel class of non-coding RNAs with a covalently closed loop structure, are common in the brain. They are stable, conserved molecules that are widely expressed in eukaryotes in tissue-, cell-, and development-specific patterns. Many circRNAs have recently been identified in nervous system diseases, and some circRNA expression profiles have been linked to PD. Given that recent research has indicated the essential roles of various circRNAs in the development and progression of neurodegenerative diseases, the identification of individual circRNAs may be a promising strategy for finding new treatment targets for PD. Moreover, the search for circRNAs with high specificity and sensitivity will open up new avenues for the early diagnosis and treatment of PD. Herein, we address the biogenesis, properties, and roles of circRNAs and review their potential utility as biomarkers and therapeutic targets in PD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app