Add like
Add dislike
Add to saved papers

A comparative study on inclusion complex formation between formononetin and β-cyclodextrin derivatives through multiscale classical and umbrella sampling simulations.

Formononetin, a naturally occurring isoflavone exhibits a wide range of therapeutic applications including antioxidant, anti-tumor, antiviral, anti-diabetic and neuroprotective activities. However, the low hydro-solubility of formononetin has limited its prospective use in cosmetic, neutraceutical and pharmaceutical industries. Cyclodextrins (CDs), especially β-CD and its derivatives have emerged as promising agents to improve the water solubility of poorly hydrosoluble compounds by the formation of inclusion complexes. We employed multiscale (1000 ns) explicit solvent and umbrella sampling molecular dynamics (MD) simulations to study the interactions and thermodynamic parameters of inclusion complex formation between formononetin and five most commonly used β-CD derivatives. Classical MD simulations revealed two possible binding conformations of formononetin inside the central cavity of hydroxypropyl-β-CD (HP-β-CD), randomly methylated-β-CD (ME-β-CD), and sulfobutylether-β-CD (SBE-β-CD). The binding conformation with the benzopyrone ring of formononetin inside the central cavity of β-CD derivatives was more frequent than the phenyl group occupying the hydrophobic cavity. These interactions were supported by a variety of non-bonded contacts including hydrogen bonds, pi-lone pair, pi-sigma, and pi-alkyl interactions. Formononetin showed favorable end-state MD-driven thermodynamic binding free energies with all the selected β-CD derivatives, except succinyl-β-CD (S-β-CD). Furthermore, umbrella sampling simulations were used to investigate the interactions and thermodynamic parameters of the host-guest inclusion complexes. The SBE-β-CD/formononetin inclusion complex showed the lowest binding energy signifying the highest affinity among all the selected host-guest inclusion complexes. Our study could be used as a standard for analyzing and comparing the ability of different β-CD derivatives to enhance the hydro-solubility of poorly soluble molecules.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app