Bimetallic (AuAg, AuPd and AgPd) nanoparticles supported on cellulose-based hydrogel for reusable catalysis.
Carbohydrate Polymers 2023 June 16
Biopolymer-derived hydrogels with low-cost and sustainable features have been considered as fascinating supported materials for metal nanoparticles. Cellulose, as the most abundant biopolymer, is a renewable raw material to prepare biopolymer-derived hydrogels for catalysis. Here, a cellulose-based hydrogel is designed to load bimetallic (AuAg, AuPd and AgPd) nanoparticles. 4-Nitrophenol reduction and Suzuki-Miyaura coupling reactions are selected to evaluate and compare the catalytic performance of the resulting bimetallic nanoparticle-loaded cellulose-based composite hydrogels. The bimetallic nanocomposite hydrogels are easy to be recycled over 10 times during the catalytic experiments and possess good applicability and generality for various substrates. The catalytic activity of bimetallic nanocomposite hydrogels was compared with recent literatures. In addition, the possible catalytic mechanism is also proposed. This work is expected to give a new insight for designing and preparing bimetallic nanoparticle-based cellulose hydrogels and proves its applicability and prospect in the catalytic field.
Full text links
Trending Papers
SGLT2 Inhibitors: A New Therapeutical Strategy to Improve Clinical Outcomes in Patients with Chronic Kidney Diseases.International Journal of Molecular Sciences 2023 May 14
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app